
EUROPA2 : Plan Database Services for Planning and Scheduling Applications
UNPUBLISHED - DO NOT DISTRIBUTE

Tania Bedrax-Weiss∗† and Jeremy Frank and Ari J ónsson‡ and Conor McGann∗

Computational Sciences Division
NASA Ames Research Center

Mailstop 269-4
Moffett Field, CA 94035-1000

{bachmann,tania,frank,jonsson,cmcgann}@email.arc.nasa.gov

Abstract

NASA missions require solving a wide variety of planning
and scheduling problems with temporal constraints; simple
resources such as robotic arms, communications antennae
and cameras; complex replenishable resources such as mem-
ory, power and fuel; and complex constraints on geometry,
heat and lighting angles. Planners and schedulers that solve
these problems are used in ground tools as well as onboard
systems. The diversity of planning problems and applications
of planners and schedulers precludes a ”one-size fits all” so-
lution. However, many of the underlying technologies are
common across planning domains and applications. We de-
scribe CAPR, a formalism for planning that is general enough
to cover a wide variety of planning and scheduling domains
of interest to NASA. We then describe EUROPA2 , a soft-
ware framework implementing CAPR. EUROPA2 provides
efficient, customizablePlan Database Servicesthat enable
the integration of CAPR into a wide variety of applications.
We describe the design of EUROPA2 from the perspective of
both modeling, customization and application integrationto
different classes of NASA missions.

Introduction
Inspired by NASA’s missions that require solving a wide va-
riety of planning and scheduling problems, each of which
must be integrated into different operating environments,we
set out to formalize and implement a planning framework on
which many of these mission scenarios can be built. Our
intuition is that many other real-world problems are sim-
ilar and that such a framework will be widely applicable.
The Remote Agent Experiment (RAX) on the Deep Space 1
Spacecraft (Muscettolaet al. 1998), (Jónssonet al. 2000)
featured a planner on board a spacecraft that required rea-
soning about accumulated thrust, spacecraft attitude relative
to navigation aids, and the state of hardware resources like
cameras. The EO-1 ScienceCraft experiment (Tranet al.
2004) is another onboard planner that must reason about on-
board memory and CPU resources, communications oppor-
tunities to replenish memory, and options for satisfying sci-

∗QSS Group, Inc.
†Authors listed in alphabetical order.
‡USRA-RIACS

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ence goals. Controllers onboard terrestrial Unmanned Au-
tonomous Vehicles (UAVs) such as Rotorcraft (Whalleyet
al. 2003) must reason about the state of communication sys-
tems, onboard payloads such as imagers, and how image ac-
quisition constrains intended maneuvers such as banks and
climbs, in the face of complex flight dynamics. Autonomy
systems (Dias, Lemai, & Muscettola 2003), (Despouys &
Ingrand 1999) as well as ground tools (Bresinaet al. 2003)
for robots like the Mars Exploration Rovers (MER) require
reasoning about thermal models, available power and re-
maining memory, as well as the location of the rover rel-
ative to intended science targets and how to choose from
among available science operations. Image Processing plan-
ning (Goldenet al. 2003) requires reasoning about feasible
image manipulation operations, available web services, as
well as the state of underlying computer file systems, in-
cluding the location of inputs and outputs of processing op-
erations.

The diversity of planning problems and applications of
planners and schedulers precludes a ”one-size fits all” solu-
tion. Different planning paradigms apply more naturally to
different planning problems, and different applications re-
quire different planning services. For example, planetary
rover domains require one form of path planning, UAVs re-
quire quite different forms of path planning, while satellite
domains such as EO-1 do not require path planning at all.
Path planning generally requires reasoning about concepts
that are immutable with respect to time, and so does im-
age processing. Although domains such as EO-1, MER, and
RAX require reasoning with resources, EO-1 and MER fea-
ture onboard memory resources, while the RAX does not.
In either of these cases, reasoning about time is important.
Furthermore, in onboard systems such as spacecraft, UAVs
and rovers, planner response time may preclude expensive
algorithms that guarantee optimality. Additionally, some
applications require that the planner provide incomplete so-
lutions, such as those where the planner interfaces with an
intelligent executive that is able to “fill in the blanks”. Hu-
man operators or other autonomous sub-systems may look at
plans, and request changes or explanations, ultimately lead-
ing to new planning problems.

Despite the great diversity of planning problem classes,
planners and applications, there is considerable commonal-
ity among planning and scheduling problems, solvers and

Figure 1: Sample Plan Database Applications

applications. This commonality can be aggregated into a
set of plan services that we call thePlan Databasethat are
provided to build such applications. Consider the scenarios
illustrated in Figure 1. The first is an application of auto-
mated planning where the input planning problem is solved
by aPlannerto produce an acceptable partial plan. The role
of the Planner is to perform the search steps for resolving
flaws. Thus it interacts with a partial plan by imposing and
retracting restrictions. All operations are made on thePlan
Databasewhich stores the partial plan. The second is an
application of automated planning in concert with aUser.
The User may introduce goals into a plan, and change or
undo decisions previously made by a Planner. Additionally,
a User may employ a Planner to work on the current par-
tial plan. In this case, changes are also made in response to
queries and operations on thePlan Database. In the last fig-
ure, planning technology is deployed for plan execution. A
partial plan may be used by anExecutivefor execution. In
such a scenario, the partial plan is updated throughout execu-
tion. The Executive may employ incomplete search to refine
the partial plan as it goes. A Planner may be employed to
repair a plan or develop a refinement of the plan as the mis-
sion progresses. In each of the cases described,clients(i.e.
Planner, User, Executive) leverage the services of a common
server, thePlan Database.

We have created a robust formal framework called Con-
straint Planning with Resources (CAPR) that supports many
commonly used representational primitives and reasoning
engines. We describe this formalism in the next section of
the paper. This formal framework provides the underpin-
nings for the Plan Database, called the Extensible Universal
Remote Operations Architecture (EUROPA2). This idea is
similar to the approach taken by the CLARATy robotics con-
trol architecture (Nesnaset al. 2003) or MDS (Dvoraket al.
2000), as well as constraint reasoning systems such as ILOG
(ILOG 1996).

Applications will require customization of the Plan
Database to support only those primitives needed by the do-
main (e.g. time, resources), and to implement an appropriate
planner (e.g. an optimizing planner versus one with real-
time guarantees). We describe how to build domain models
for EUROPA2 as well as how to build custom planners. In
the final sections of the paper, we discuss related work, and
conclude with a discussion of our future plans.

Constraint-Based Planning with Resources
In this section we describe Constraint Based Planning with
Resources (CAPR). CAPR is a modification of Constraint-
Based Attribute and Interval Planning (CAIP) (Frank &
Jónsson 2003), a formalism that employs variables and con-
straints as first-class objects to describe complex planning
domains. CAPR relaxes some of the more restrictive as-
sumptions made in CAIP, resulting in a more generally ap-
plicable formalism. In particular, we include general re-
sources as first-class citizens in the planning formalism, and
separate subgoaling and causal models from the resource
model. We will show later that we lose none of the repre-
sentational power of CAIP by having made these changes.

We first describe the formalism in grounded terms, in
which all primitives are predicates. We then provide a more
easily managed formalism using constraints and variables as
primitives.

Grounded case
A token is a logical statement of the form
holds(s, e, p(a1, ..., ak)) where s < e are start and
end times, p is a predicate symbol anda1, ..., ak are
parameter values. Tokens generalize actions and state, and
merely assert that some property of interest is true for a
period of time.

A resourceR is defined by a tuple(iR, lR, LR) wherei is
the initial level,l is the minimum level,L is the maximum.

A transactionis a numerical change in a resource over a
specified interval. It is defined as a tuple(R, ts, te, δ) where
R is a resource,ts ≤ te are times denoting the start and end
time of the transaction, andδ is a function mapping each
t ∈ [ts, te] to a numerical value.

An instantaneous transactionis a transaction wherets =
te and is sometimes written as(R, t, δ) .

A configuration ruleis an implication of the formT ⇒
C1 ∨ C2 ∨ · · · ∨ Cn whereT is a token and eachCi is a
conjunction of the formSi,1 ∧ · · · ∧ Si,ki

where eachSi,j is
either a token or a transaction.

Definition 1 A planning domainD is a tuple (T ,R, C),
whereT is a set of tokens,R is a set of resources, andC
is a set of configuration rules.

Definition 2 A resource profilefor a given planP and re-
source(iR, lR, LR) from the domain for that plan is a func-
tion λR(t) defined as follows:

• We first define a cumulative impact function∆i for each
transactionTi in P as follows:
– If Ti is a non-instantaneous transaction , define∆i as

the integral ofδ, defined as∆i(t) = 0 for t < ts,
∆i(t) =

∫ t

τ=ts

δ(τ) for t ∈ [ts, te] and ∆i(t) =
∫ te

τ=ts

δ(τ) for t > te.

– If Ti is a instantaneous transaction , define∆i(t) = 0
if t < ts, and∆i(t) = δ(t) if t ≥ ts.

• Then, for each time pointt, λR(t)=
∑

i ∆i(t).

A resource profileλR(t) for a resource(iR, lR, LR) and plan
P is valid if lR ≤ λR(t)≤ LR for all timepointst.

A partial plan is a set of tokens along with the applicable
transactions defined by the domain rules.

A partial planQ is anextensionof a partial planP if each
token inP can be mapped to a matching token inQ.

Definition 3 A partial planP is valid if:

• for each tokenT in P , and for each configuration rule
T ⇒ C1 ∨ · · · ∨ Cn, there exists aj ∈ [1, n] such that
whereCj = Si,1 ∧ · · · ∧ Si,ki

, each of the tokens and
transactionsSi,1, . . . , Si,ki

are inP .
• the resource profile for every resource is valid

A planning problemis a pair,(D, P) whereD is a planning
domain andP is a partial plan. Asolutionto the planning
problem is a planQ that is a valid extension ofP .

Lifted case
The grounded formalism is inconvenient since it may require
large numbers of token descriptions and rules. It is more ef-
fective to compress these definitions by using variables and
constraints as the primitive elements of the planning domain
descriptions.

A domainis a list of primitive values. Apredicate defi-
nition is a tuple(p, D1, ..., Dk) consists of a predicatep and
a (possibly empty) set of domains, which define the number
of arguments and the argument domains for the predicate.

A resource definition, like before, is a tuple
(iR, lR, LR) where i is the initial level, l is the mini-
mum level andL is the maximum.

A token specifies a predicate instantiation holding
over a period of time. Formally, atoken is a tuple
(s, e, p, a1, ..., ak) wheres ande are temporal variables, and
eachai is a variable whose domain is restricted toDi. (Note
that a duration variabled can be defined for convenience, but
is not necessary.) We distinguish the domain of a variableai

in a token asdomain(ai), as opposed to a domain used in
a predicate definition.

A transactionis a defined by(R, s, e, δ) as before, except
thatR, s ande are variables. Instantaneous transactions en-
force the constraints = e.

A compatibilityis a way to represent large collections of
configuration rules compactly. It is an implication of the
form H ⇒ B1 ∨ B2 ∨ · · · ∨ = Bn. The headH is a tuple
(p, E1, ..., Ek), wherep appears in a planning domain pred-
icate definition(p, D1, . . . , Dn) such thatEi ⊆ Di. Each
Bi is a conjunction of the formSi,1 ∧ · · · ∧Si,ki

where each
Si,j is of the form:Gi,j ; Ci,j whereGi,j is a predicate or a

transaction, andCi,j is a set of constraints relating variables
in the head predicate andGi,j . A token (s, e, p, a1, ..., ak)
matchesa compatibility head(q, E1, ..., Ek) if p = q and
∀i, domain(ai) ⊆ Ei.

A planning domainis a tuple(P ,R, C) whereP is a set
of predicate definitions,R is a set of resource definitions,
andC is a set of compatibilities.

A resource envelopefor a given planP and resource
R = (iR, lR, LR) is a pair of functionsLmax,R(t) and
Lmin,R(t) which are defined as follows: LetQ1, Q2, . . . be
the set of all grounded extensions ofP . Let λi

R(t) be the re-
source profile forQi. ThenLmax,R(t) = maxi λi

R(t) and
Lmin,R(t)= mini λi

R(t) . A resource envelope isvalid
if lR ≤ Lmin,R(t)≤ LR and lR ≤ Lmax,R(t)≤ LR

for all times t. A resource envelope isviolated if either
Lmax,R(t)< lR or Lmin,R(t) > LR for somet. A resource
envelope isundeterminedif it is neither valid nor violated.

A constraintc is a relation among the values of a set
of variablesai...ak; that is, L ⊂ domain(a1) × ... ×
domain(ak). A constraintc is satisfiedif all possible in-
stantiations of its variables yield assignments in the relation
L. A constraintc is violated if no instantiation of its vari-
ables yields an assignment within the relationL. Finally, a
constraint isundeterminedif it is neither satisfied nor vio-
lated.

A partial plan is a set of tokens and a set of constraints.
Each token in a partial plan is eithersupportedor unsup-
ported. A tokenT is supported if for every compatibility
where the head matches withT , the compatibility has at least
one disjunctBi such that for each conjunctGi,j ; Ci,j in Bi,
the plan contains a token that matchesGi,j and has all corre-
sponding constraints inCi,j . Any token that is not supported
is unsupported. Finally, any given partial planP , defines
a set of resource transactions, and associated resource en-
velopes.

A partial planP is completeif all tokens are supported. A
partial planP is valid if the resulting resource envelopes are
valid, and all constraints inP are satisfied.

A planning problemis a planning domain(P ,R, C) and a
partial planP from that domain. Asolutionto the planning
problem is a complete and valid planQ that is an extension
of P .

Decision Model and Completeness results

We next describe the flaw mechanisms and the associated
search path options. In backwards chaining, unsatisfied pre-
conditions are flaws that must be resolved before achieving
an complete plan. In POCL planning, the flaws are open
conditions and unresolved threats. In CAPR, flaws are ei-
ther undetermined constraints, undetermined resources, or
unsupported tokens. As we will see below, flaw resolution
for all three of these cases is accomplished by constraining
the domain values of variables.

Undetermined constraints: Suppose we have a partial
plan P with a variablev in a constraintc that is undeter-
mined. Normally, unassigned variables are simply assigned
single values until constraints are known to be satisfied.
However, it is possible to proceed by imposing constraints

that restrict variables’ values.
Undetermined resources: Suppose we have a partial

planP with a resource that is undetermined. In most cases
it is too expensive to calculateLmax,R(t) andLmin,R(t) ,
because it would require calculating all of the grounded ex-
tensionsQi. Thus we must bound aboveLmax,R(t) and
bound belowLmin,R(t) to determine validity. When all
transactions are grounded we can determineLmax,R(t) and
Lmin,R(t) ; for this reason, flaws on resources are usually
satisfied by assigning transaction timepoint variables. Sup-
pose the problem is such that no incomplete token decisions
will ever arise as flaws are resolved. In this case, we are
left with a scheduling problem. If we further restrict our-
selves to the case of scheduling instantaneous transactions,
we can use techniques such as those described in (Frank
2004; Muscettola 2002) to tightly boundLmax,R(t) and
Lmin,R(t) . In some circumstances, partial orders of trans-
actions are sufficient to guarantee that the resource is prov-
ably valid. For these cases, flaw resolution can be accom-
plished by only ordering transaction timepoints.

Unsupported tokens:Finally, suppose we have a partial
plan P with a tokenT =(s, e, p, a1, ..., ak) that is unsup-
ported. There is at least one rule whose head unifies with
(matches)T . For each such rule, one of the disjunctsBi

must be chosen in order to satisfy the rule. This can be
thought of as a value choice for a variable. Each disjunct
consists of a conjunctGi,j ; Ci,j whereGi,j is a predicate de-
scription or transaction. IfGi,j is a transaction, a resource
must be chosen for the transaction; this too is a variable
choice. If Gi,j is a token, then letV be the set of tokens
that can be unified withGi,j , along with one extra element,
⊤, representing the use of a new token. Then, the decision
to be made is which element ofV to select. Once again,
this can be viewed as a variable choice. Note that only if⊤
is chosen, resulting in a new token, will any new compati-
bilities apply to tokens in the planP . However, ifGi,j is
unified withV ∈ V , all the constraints inCi,j are added to
constrain the variables inV andT . These constraints gener-
alize causal links in the same manner as CAIP.

Completeness results:We are now ready to show that
this decision model is sufficient for solving planning prob-
lems in CAPR. As was true in the CAIP framework (Frank &
Jónsson 2003), there may be solutions to a planning problem
that are not reachable given the domain description and the
decision model. However, we can still prove that there is a
plan that is a complete and valid extension of the domain de-
scription and decision model such that the unreachable plan
is an extension of this plan. This situation arises because
there is nothing in the formalism to prevent adding arbitrary
tokens that don’t have compatibilities associated with them.

Theorem 1 Given are a finite planning domain(P ,R, C)
and a finite length partial planP . Assume thatQ is a com-
plete and valid finite length extension ofP . Then, there ex-
ists a planR, that is a complete and valid extension ofP
such that a sequence of flaw resolutions transformsP into
R, andQ is an extension ofR.

Proof 1 As in (Frank & J́onsson 2003), we will useQ as a
”heuristic” to describe how to transformP into R. While

applicable:

• If a tokenT of P is unsupported, there is a supported
tokenV in Q that matchesT ; use this token to satisfy
T , either by choosing a disjunctBi, by satisfying a con-
junctSi,j ; Ci,j with an existing matching token inP , or by
adding a new token toP .

• If a variable v is unassigned, there is a matching vari-
able w in Q; use this variable to assign the value ofv.
Note that this covers the case of deciding which available
resource a transaction is assigned to.

• If a constraint among variables inP has not been im-
posed, useQ to impose that constraint. Note that this
covers the case of ordering timepoints.

SinceQ is finite andP , at each stage, is a subset ofQ,
the process halts with a complete planR. And, since the set
of constraints inP , at each stage, are a subset of those in
Q, constraint validity inR is obvious. The only remaining
part is to show that all resources are valid inR. First, it
is easy to see that a resource inR cannot be violated, as
Q is an extension ofR and the profile is defined based on
all extensions. Second, the resource cannot be neither vio-
lated nor valid, as that will give rise to flaws and the process
does not halt until there are no other flaws. So, the resource
envelopes must also be valid. Thus,R is a complete valid
extension ofP , and is a subset ofQ.

EUROPA2

EUROPA2 implements aPlan Databasemotivated by the
CAPR formalism to provide planning services to allow for
implementation of a wide variety of planners and schedulers.
These services include:

• Domain modeling: for describing planning domains

• Partial plan representation: for maintaining partial plans

• Flaw generation: for generating flaws from a partial plan

• Flaw resolution: for resolving flaws in a partial plan

• Plan assessment: for determining plan completeness or
violations

• Constraint propagation: for propagating the consequences
of constraints

To meet the needs of missions and research projects, the de-
sign of the Plan Database must be: 1. Efficient to ensure low
latency for operations and queries; 2. Flexibile to ensure
services can be selected and flexibly integrated; 3. Extensi-
ble to ensure services can be enhanced to meet the needs of
research or mission applications.

We use a planning domain loosely based on the MER
mission to show the services provided by EUROPA2 . We
assume the application in question is one of producing
daily activity plans for operation of a planetary surface
robot namedRover. Roveris a mobile robot that can take
panoramic images. ARoverhas a battery on board, and can
replenish its energy levels using solar power.

Planning Domain Descriptions with NDDL
Planning domain descriptions for EUROPA2 are written in
the New Domain Description Language (NDDL). NDDL
provides an object-oriented syntax and semantics that makes
it convenient to express sophisticated relationships among
elements of a partial plan. In this section we will describe
NDDL and show how the syntax translates to the CAPR for-
malism.

Predicates A predicate in CAPR defined as
(p, D1, ..., Dk) is directly described in NDDL. For ex-
ample, aRover might be at aLocation, or it might be
moving from one location to another. The predicateAt can
be introduced with:

predicate At{Rover r; Location l;}

wherer and l refer to the set of all rovers and the set of
all locations respectively. Similarly we can introduce the
predicateGoing:

predicate Going{Rover r;

Location from;

Location to;}

RoverandLocationare user-defined types which may be
expressed using enumeration:

enum Rover {spirit, opportunity}

or through the more expressive use of an abstract data
type, orclass:

class Rover {}

class Location {

int x;

int y;

Location(int x, int y){

x = x;

y = y;

}

}

Thus, class describes an unchanging object. Instances of
classes, i.e. objects, may be introduced by construction:

Rover spirit = new Rover();

Rover opportunity = new Rover();

Location rock = new Location(1, 1);

Location hill = new Location(2, 3);

Location lander = new Location(5, 8);

Predicates denote properties of a class that change over
time. For convenience, predicates may be defined directly
on a class. A predicate contains a reference to the set of
instances of the class that can be accessed through the built-
in variableobject. We may concisely restate our predicate
definitions by augmenting theRoverclass:

class Rover {

predicate At{Location l;}

predicate Going{Location from;

Location to;}

}

Compatibilities Suppose thatRoveris not permitted to go
to the same location it is leaving. Furthermore, suppose that
everyGoingmust be followed by anAt and vice versa. To
express these domain rules, we introduce acompatibilityfor
each predicate. Recall that a token is defined in CAPR as
(s, e, p, a1, ..., ak) . The compatibility forAt given below

shows the twoGoingsubgoals with constraints imposed on
their predicate parameters including the implicitobjectvari-
able and itsstart andendvariables.

Rover::At{

// Require a Going token on same

// object which succeeds this token

subgoal(Going g0);

eq(g0.start, end); // Equate timepoints

eq(g0.from, l); // Equate parameters

eq(g0.object, object);

// Require a Going token on same

// object which precedes this token

subgoal(Going g1);

eq(g1.end, start); // New constraint

eq(g1.to, l); // New constraint

eq(g1.object, object);

}

It is convenient to express temporal relationships and
NDDL provides constructs for the Allen relations aug-
mented with metric time. The NDDL Allen relations are
shorthand for creating a subgoal token with the associated
temporal constraints. Furthermore, we can use theobject
variable to specify the constraint that theAt token must be
on the same object as theGoing token. The compatibilities
for Goingcan be expressed more concisely as follows:

Rover::Going{

neq(to, from); // to != from

meets(object.At a0);

eq(a0.l, to);

met by(object.At a1);

eq(a1.l, from);

}

Suppose instead that theRovercan either go to another
location or stay at the current location and take a panoramic
image. In NDDL the disjunction is explicitly represented as
a boolean variable:

Rover::At{

// disjunctive rule for successor:

bool next;

if (next==false) {

meets(object.Going g0);

eq(g0.from, l);

}

if (next==true) {

meets(object.TakeImg i0);

}

...

}

Resources and Transactions To illustrate the use of re-
sources in NDDL, we introduce a battery which stores en-
ergy produced from solar panels and allows energy to be
consumed by rover activities.

class Rover {

...

Resource battery;

Rover(){

...

battery = new Battery(10, 3, 30);

}

}

We declare a predicate for power generation:

predicate generatePower{Resource r;

float rate;}

and define a rule linking it to transactions on a resource.
Note that the current EUROPA2 implementation is limited
to handling instantaneous transactions. Consequently, trans-
actions are typically defined as occurring at the start or end
of tokens. Instantaneous transactions in CAPR are defined
by (R, t, δ) and are identical in NDDL:

generatePower{

// produce transaction at the end

ends(r.transaction tx);

// relation to derive instantaneuos

// change from rate and duration

calcProduction(tx.quantity,

rate, start, end);

}

Finally, the compatibility forGoing can be augmented
with a consumption transaction on the battery where the
quantity is based on the distance travelled:

...

subgoal(object.battery.transaction tx);

calcConsumption(tx.quantity, from, to);

// Consume at the beginning

eq(tx.time, start);

...

Timelines A common special case of resources can be
used to express what CAIP called Timelines. Timelines en-
force mutual exclusion between tokens and also impose the
constraint that the timeline must be covered by tokens re-
flecting the state of the timeline at each timepoint. In CAPR,
this semantics can be enforced by using a reusable unary re-
source with initial capacity 1, minimum level of 0 and max-
imum level of 1, so that the planner must place one and only
one transaction that uses the resource at each available time:

class Rover {

...

Resource mutex;

Rover(){

mutex = new Resource(1, 0,1);

}

}

Then, we specify appropriate use transaction require-
ments in the compatibilities forAt andGoing:

...

// Consume at the beginnning

subgoal(Resource.transaction tx0);

eq(tx0.object, object.mutex);

eq(tx0.time, start);

eq(tx0.quantity, -1);

// Produce at the end

subgoal(Resource.transaction tx1);

eq(tx1.object, object.mutex);

eq(tx1.time, end);

eq(tx1.quantity, 1);

...

Although in CAPR, and subsequently, EUROPA2 , time-
lines are not first class members of the paradigm, the notion
of a timeline is very common. Therefore, we declare aTime-
line class and we provide an efficient implementation and
representation:

class Rover extends Timeline {

predicate At{Location l;}

predicate Going{Location from;

Location to;}

Resource battery;

Rover(){

battery = new Battery(10, 3, 30);

}

}

Static Objects Suppose that in theRover planning do-
main only some paths in the survey area are traversable, and
traversability does not vary over time. NDDL offers the abil-
ity to describe data that holds independently of time:

class Path {

Location loc1;

Location loc2;

Path(Location l1, Location l2){

loc1 = l1;

loc2 = l2;

}

}

The set of path instances can be populated by:

Path p1 = new Path(rock, hill);

Path p2 = new Path(hill, lander);

Path p3 = new Path(martian-city, lander);

The Going predicate can now check the existence of a
path by using a filter. A filter operates on a variable whose
domain is restricted via propagation. Should there be no
path, the variable’s domain will be empty and a violation
will occur. In the example, the initial values forp will be p1,
p2, andp3.

Rover::Going{

Path p : {

eq(p.loc1, from);

eq(p.loc2, to);

}

}

Partial Plans in EUROPA2

In this section we discuss the representation and manipula-
tion of partial plans in EUROPA2 .

A partial plan for the rover planning domain is created
with the following statement:

goal(Rover.Going G);

This introduces a tokenG for the predicateGoing de-
fined on the classRover. The result is the partial planp
= {{G},{}}. Along with G the following variables are in-
troduced to the Plan Database:

1. start: start time of the token. In this example the domain
is [-inf +inf].

2. end: end time of the token. In this example, the domain is
[-inf +inf].

3. duration: duration of the token, which is derived from the
start andend. In this example, the domain is [1 +inf].

4. object: implied variable with domain populated by all in-
stances of a class. In this example, the domain is popu-
lated with{spirit, opportunity}.

G: Going
({spirit,opportunity}, {Active},

{l1,l2,l3,l4}, {l1,l2,l3,l4})

A: At
({spirit,opportunity}, {Active,Merged},

{l1,l2,l3,l4})

T: transaction
({spirit.battery,opportunity.battery},

[-inf +inf])

Timepoint

Active
Token

Requires
relation

Explicit
Constraint

Implied
Constraint

1

2

2

3

2

1

5

4

2

Inactive
Token

Transaction

Figure 2: Plan database elements for partial plan{{G}{}}

5. state: records the possible states of a token as a result of
flaw resolution operations which we describe later.

Theparameter variablesintroduced depend on the predicate
description of the token. In this case, sinceG is an instance
of theGoing predicate, we introduce the following:

6. from - the location the rover is leaving from. In this ex-
ample the domain is populated with all instances of the
Locationclass i.e.{rock,hill,lander,martian-city}.

7. to - the location the rover is going to. In this example the
initial domains are identical.

NDDL allows the specification of constraints in the initial
partial plan. For example,spirit must be at locationrock at
time0:

// Introduce token A

goal(Rover.At A);

// Constrain location variable

eq(A.l, rock); // c0

// Constrain object variable

eq(A.object, spirit); // c1

// Constrain start <= 0 <= end

leq(A.start, 0); // c2

leq(0, A.end); // c3

The partial plan,p, is given by the tuple ({G,A}, {c0, c1,
c2, c3}).

Inference with Compatibilities All supported tokens in
a partial plan are represented asActive Tokens. All token
flaws (unsupported tokens) that can be inferred from the par-
tial plan and the model are represented asInactive Tokens.
Figure 3 illustrates the states and transitions of tokens in
EUROPA2 . A token isActiveimmediately when introduced
by an actor external to the plan database, as is the case with
a goalG specified in an initial partial plan. A token is ini-
tially Inactivewhen introduced by a compatibility matching
anActive Token. As prescribed by CAPR, an inactive token

Active MergedInactive

cancel cancel

mergeactivate

Inserted by
External Client

Inserted
by Execution

of a Compatibility

Figure 3: Token State Transition Diagram

corresponds to a token flaw which can be resolved by either
mergingwith a matchingActive Tokenor by choosing to use
the resolver⊤ via activation.

We use a simplified version of a compatibility for
Rover::Goingto illustrate the tokens and associated con-
straints that arise as a result of matching a compatibility to
anActive Token:

0. Rover::Going{

1. neq(to, from); // to != from

2. meets(object.At A);

3. eq(A.l, to);

4. subgoal(object.battery.transaction T);

5. eq(T.start, start);

6. }

The head of the compatibility is matched with a goalG
immediately upon processing the initial partial plan yielding
a token flawA, a set ofconstraintsand a transactionT. Fig-
ure 2 showsA, T, and the constraints with line numbers that
indicate the correspondence in the compatibility. Line 1 pro-
duces a constraint among the parameter variables ofG. Line
2 introduces the token flawA. It also imposes anequality
constraint between theobjectvariables ofG andA. Line 3
equates the parameter variablesA.l andG.to. Line 4 requires
a new transactionT in the database. Since EUROPA2 does
not currently support interval transactions, we generate an
implicit constraint equatingT.endto T.start. Finally, Line 5
equates the start times ofG andT. Since disjunctive com-
patibilities are modeled by variables, these variables arein-
troduced as flaws when matching a compatibility to anAc-
tive Token. Only after deciding these variables are the corre-
sponding tokens and constraints introduced.

Flaw Generation and Resolution
Queries and events are provided so that clients can readily
access flaws from the Plan Database. Events provide im-
mediate access to changes within the Plan Database, but re-
quire clients to subscribe in order to receive the updates. For
example, when anInactive Tokenis inserted into the plan
database through execution of a compatibility, a correspond-
ing message is posted to any registered clients. Similarly,as
variables are introduced, restricted or relaxed, clients may
observe these events and synchronize their flaw state accord-
ingly. Furthermore, events are raised as resource profiles
become valid or undetermined. Clients may also query the
database for the current set of all unbound variables, token
flaws and undetermined resources.

As in CAPR, the following methods of resolution are pro-
vided in EUROPA2 for each category of flaw:

• Token Flaw- inactive tokens must beactivatedin which
case we restrict thestatevariable to the valueActive; or
mergedin which case we restrict thestatevariable to the
valueMerged. If a token is merged, equality constraints
between the matched variables of the inactive token and
the target active token are posted. EUROPA2 provides an
“disable” operation to avoid posting equality constraints.
This provides significant performance advantages as it re-
duces the growth rate of the resulting constraint network.

• Variable Flaw- unbound variables are resolved by assign-
ing values directly or posting constraints.

• Resource Flaw- resource flaws are resolved either by
constraining or assigning itsobjectvariable or by posting
constraints on timepoints to order transactions.

Plan Assessment
Some applications may have different models of interaction
with EUROPA2 and will want to impose relaxations on the
set of flaws that should be resolved by the planner. For ex-
ample, imagine a multi-agent system where each planning
agent shares a single model, yet each is specialized to re-
solve flaws only in a sub-domain of expertise. Each planning
agent could inspect the shared database and work on those
flaws it knows how to resolve. Each planning agent would
be done planning when it finished resolving all flaws in its
“view”. EUROPA2 provides a flexible decision management
framework to filter the set of flaws that need to be resolved
to complete a partial plan. Semantically, the “view” spec-
ification amounts to arelaxationof the strict interpretation
of the set of flaws in a plan. The view specification allows
clients to indicate:

• temporal restrictions - all flaws outside a given planning
horizon are excluded.

• predicate restrictions - all flaws derived from a given set
of predicates are excluded.

• variable restrictions - variable flaws on a given set of dy-
namic and/or infinte variables are excluded.

• custom restrictions - specialized filter conditions may be
developed and integrated as needed by the client.

Constraint Propagation
EUROPA2 ’s constraint propagation infrastructure is illus-
trated in Figure 4. The model statement:

calcConsumption(tx.quantity, from, to);

introduces aConstraint with the ConstrainedVariables
T.quantity, from, and to. As the domain of each con-
strained variable in the constraint is propagated, the change
in the domain triggers a message to that effect that is del-
egated to theConstraintEngine. Each constraint is reg-
istered with aPropagator allowing customized propaga-
tion strategies for different constraints. This framework
allows for sepcialized domains, constraints, variables and
propagators to be integrated in an open and flexible man-
ner. The framework borrows heavily from the design of
the CHOCO kernel (Laburthe & the OCRE Research Group
2001). EUROPA2 provides a library of useful constraints

PropagatorConstraint
Engine

Constraint

Constrained
Variable

Abstract
Domain

Figure 4: Constraint Propagation Framework

Custom
Constraint

Plan
Database

Schema

Rules
Engine

Constraint
Engine

Decision
Manager

Resource
Propagator

STN
Propagator

Default
Propagator

Filter
& Flaw Spec.

Model Spec.

Client
(e.g. Planner)

Server

Figure 5: System Diagram

and three propagators: 1. a default propagator which dele-
gates constraint enforcement to each individual constraint;
2. a resource propagator which propagates transaction loads
on resources; and 3. a temporal propagator which propa-
gates temporal constraints using a simple temporal network.

EUROPA2 Architecture

We now describe the overall EUROPA2 System Architecture
and discuss how it accomplishes the design goals.

Figure 5 describes the internals of the EUROPA2 Plan
Database operating as a server to one or more clients.
The server is an assembly of EUROPA2 components inte-
grated for the needs of the particular application. ThePlan
Databaseprovides a set of plan services of the server at the
abstraction level of primitives in CAPR i.e. tokens, transac-
tions, constraints, resources, variables. TheConstraint En-
gine and related components propagate constraints among
variables and detect violations. The provided constraintsand
propagators can be freely integrated or omitted. TheRules
Enginereacts to changes in the partial plan i.e. token acti-
vation and variable binding. TheSchemais the in-memory
store for the domain model. It is used by the plan database
to enforce type restrictions and by the rules engine to match
and execute compatibilities. EUROPA2 includes a chrono-
logical backtracking planner as a standard client component,
though many applications develop their own clients. The
Decision Manageruses a view specification to manage the
set of flaws for a client.

Customizability EUROPA2 is highly customizable. Sup-
port for resources may be ommitted if a problem does not
require resources. If a problem does not require compat-
ibilities (e.g. a scheduling problem), the rules engine can
be omitted. If temporal constraints are not important in a
problem, the temporal propagator may be removed and/or
replaced with the default propagator. Only required con-
straints need to be registered. This form of customization
is useful as it allows systems to avoid incurring costs for
components that are not required. EUROPA2 also provides
a language to customize the system for new domain models.
Furthermore, heuristic and flaw specifications are also pro-
vided. An open API ensures flexbility in how EUROPA2 is
integrated.

Extensibility EUROPA2 is highly extensible. As new
problems are encountered, or new algorithms are developed,
there are many ways to integrate new capabilities as special-
ized components e.g. constraints, propagators, resources.
This is essential for success in research and mission deploy-
ments.

Speed EUROPA2 has produced significant gains in speed
over EUROPA. The primary contributors to the improve-
ment arise from: 1. Fast interfaces and specialized im-
plementations: the ability to tune implementations us-
ing inheritance provides speed improvements in key ar-
eas such as operations on domains. 2. Efficient merging:
EUROPA2 provides an algorithm to handle merging opera-
tions that disables redundant constraints arising in the plan
database. 3. Incremental relaxation: when relaxing a vari-
able, EUROPA2 relaxes only variables reachable through
the constraint graph. 4. Direct support for static facts:
EUROPA2 uses objects to capture static facts. Objects can
be referenced through variables. We provide a pattern for ex-
istentially quantifying objects. By contrast, EUROPA used
timelines with a single predicate to capture this information,
incurring a high overhead through inefficient merging.

Future Work

We have presented a formalization of constraint-based plan-
ning with resources and described EUROPA2 a framework
that implements the formalization. EUROPA2 is currently
being used by the Intelligent Systems Program to demon-
strate advanced robotic capabilities in the field. We have
plans to make this software available for use in research and
mission deployments.

We are currently working on many extensions to
EUROPA2 . Regarding the theory, we plan to formalize
domain independent heuristics for resource-cognizant plan-
ners. The main challenge is the identification of useful
heuristics and the translation of static CSP heuristics into
a dynamic CSP setting. We also plan to work on obtaining
soundness and completeness results for different subgoaling
configurations. We know that there is a relationship between
the theory behind the languages of PDDL, TAL, NDDL, and
SAS+, and we plan to identify and describe the relationship
so that we can better understand how EUROPA2 compares
to these systems.

We plan to extend our modeling language in two ways: 1.
provide better modeling support for time-invariant relation-
ships; 2. provide means to describe optimization criteria.
Some of the domains, such as the image processing domain
require the specification and reasoning about relationships
that are immutable with respect to time. We currently pro-
vide some support for specifying static data, but we need to
include support for relationships. Furthermore, many plan-
ning applications require not only finding a plan but finding a
plan with respect to certain optimization criteria. We planto
extend NDDL to allow describing optimization criteria such
as minimize makespan or minimize resource consumption.

Finally, we have numerous plans for extending our im-
plementation. We plan to extend the set of planning ser-
vices provided to include domain analysis techniques such
as reachability. We are already working on a PDDL front-
end for EUROPA2 . We also plan to extend the set of
services provided by adding direct support for lifted local
search planning; more specialized constraint reasoners; and
hybrid solvers. The current EUROPA2 implementation has
been designed to deal with consistent as well as inconsistent
states but only a backtracking planner has been implemented
to date. We need to extend the notion of flaws to include vi-
olations to be able to handle local search methods, and test
whether the implementation assumption holds.

Related Work
EUROPA2 is certainly not the only planner that can plan
with resources and express resources as first class citi-
zens. IxTeT already plans with resources, however, IxTeT
requires modeling state changing properties as attributes.
EUROPA2 allows the expression and reasoning of arbitrary
objects, not just objects that behave like attributes. Ix-
TeT, however, provides reasoning support for resources that
CAPR doesn’t provide, such as the pruning of ”dominated”
transaction ordering decisions. We were unable to find
soundness and completeness proofs of planning with re-
sources in IxTeT.

ZENO (Pemberthy & Weld 1994) is a sound and com-
plete planner that handles actions with temporal quantified
preconditions and effects. ZENO can reason about deadline
goals, piecewise-linear continuous change, external events
and, to a limited extent, simultaneous actions. In particular,
actions are allowed to overlap in time only when their effects
do not interfere. From what we can tell, there is no special
purpose reasoning on constraints, and instead, variable as-
signments ensure that non-linear equations reduce to linear
equations. In contrast, EUROPA2 provides 1. a language for
expressing declarative resources, 2. ability to express richer
types of resources, and 3. ability to handle any type of con-
straint.

PDDL (Fox & Long 2003), the planning competition lan-
guage, has been extended to cope with problems of increas-
ing size and complexity. However, the extensions have been
mainly driven by the capability of planners that have par-
ticipated in the competitions. EUROPA2 addresses some
of the concerns with PDDL as described in the JAIR spe-
cial issue, however PDDL can express some things that

EUROPA2 cannot deal with, yet. PDDL, has a process-
driven time semantics and is unable to deal with precon-
ditions that hold over specific intervals of time and effects
that can happen at arbitrary points during action execution.
In EUROPA2 resources are first-class citizens and can be
declaratively described. In PDDL, resources are represented
by numeric fluents. The ability to represent numeric flu-
ents means that planners can then subgoal based on internal
numeric states. However, it is difficult and awkward to ex-
press a unified view of resources and their properties, which
means that planners cannot take advantage of dedicated rea-
soning algorithms to solve resource problems. PDDL is able
to describe plan metrics, a capability that we plan to include
in EUROPA2 . PDDL is a stronger language for specify-
ing goals, e.g. it is possible in PDDL to express goals with
disjunctions. However, in PDDL, goals are required to be
grounded. In EUROPA2 it is possible to describe goals along
with constraints on its variables.

The Coupled Layered Architecture for Robotic Auton-
omy CLARATy, is an architecture with goals similar to those
of EUROPA2 . EUROPA2 is being developed in order to
support the development of generic algorithms, reduce the
need for recurring problems for every deployment, simplify
the integration of new technologies, use the same framework
across deployments, increase functionality by leveraginga
more mature base, and do all of this efficiently. These are
the same motivations that drive CLARATy. CLARATY is
a two-layered architecture. The first layer is the decision
layer that includes the planner, models, and heuristics. The
second layer provides the abstraction of the specific robot
components. The first layer is based on ASPEN/CASPER
system architecture which is similar to EUROPA2 ’s archi-
tecture in that the search engine performs operations on an
activity database which in turn performs constraint propa-
gation over parameters and temporal constraints. ASPEN,
however, allows you to solve problems using local repair al-
gorithms only. We provide a framework where you should
able to implement a local repair planner and a chronological
backtracking planner using some the same components.

Acknowledgements
We wish to thank the rest of the EUROPA2 development
team: Andrew Bachmann, Will Edgington, Michael Iatauro,
and Sailesh Ramakrishnan, for their important contributions
to this work. This research was supported by NASA Ames
Research Center and the NASA Intelligent Systems pro-
gram.

References
Bresina, J.; Jónsson, A.; Morris, P.; and Rajan, K. 2003.
Constraint maintenance with preferences and underlying
flexible solution. InConstraint Programming Workshop
on Change and Uncertainty.
Despouys, O., and Ingrand, F. 1999. Propice-plan: To-
wards a unified framework for planning and execution. In
Proceedings of the 5th European Conference on Planning.
Dias, M.; Lemai, S.; and Muscettola, N. 2003. A real-time
rover executive based on model-based reactive planning. In

Proceedings of the International Conference on Robotics
and Automation.
Dvorak, D.; Rasmussen, R.; Reeves, G.; and Sacks, A.
2000. Software architecture themes in ”jpl”’s mission data
system. InIEEE Aerospace Conference.
Fox, M., and Long, D. 2003. Pddl 2.1: An extension to
pddl for expressing temporal planning domains.Journal of
Artificial Intelligence Research20.
Frank, J., and Jónsson, A. 2003. Constraint based attribute
and interval planning.Journal of Constraints8(4).
Frank, J. 2004. Bounding the resource availability of par-
tially ordered events with constant resource impact. InPro-
ceedings of the10th International Conference on the Prin-
ciples and Practices of Constraint Programming.
Golden, K.; Pang, W.; Nemani, R.; and Votava, P. 2003.
Automating the processing of earth observation data. In
Proceedings of the7th International Symposium on Artifi-
cial Intelligence, Robotics and Space.
ILOG. 1996. Ilog solver: User manual. Version 3.2.
Jónsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: Theory
and practice. InProceedings of the5th International Con-
ference on Artificial Intelligence Planning and Scheduling.
Laburthe, F., and the OCRE Research Group. 2001. Choco,
a constraint programming kernel for solving combinato-
rial optimization problems. Available at http://www.choco-
constraints.net.
Muscettola, N.; Nayak, P.; Pell, B.; ; and Williams, B.
1998. Remote agent: To boldly go where no ai system
has gone before.Artificial Intelligence103(1-2).
Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. InProceedings of the8th

International Conference on the Principles and Practices
of Constraint Programming.
Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Es-
tlin, T.; and Kim, W. S. 2003. Claraty: An architecture
for reusable robotic software. InProceedings of the SPIE
Aerosense Conference.
Pemberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. InProceedings of the 12th National
Conference on Artificial Intelligence, 1010–1015.
Tran, D.; Chien, S.; Sherwood, R.; no, R. C.; Cichy, B.;
Davies, A.; and Rabbideau, G. 2004. The autonomous
sciencecraft experiment onboard the eo-1 spacecraft. In
Proceedings of the19th National Conference on Artificial
Intelligence.
Whalley, M.; Takahashi, M.; Schulein, G.; Freed, M.;
Christian, D.; Patterson-Hine, A.; and Harris, R. 2003.
The nasa army autonomous rotorcraft project. InProceed-
ings of the American Helicopter Society59th Annual Fo-
rum, 61–677.

